Validation of a Thermodynamic Retrieval Technique by Application to a Simulated Squall Line with Trailing Stratiform Precipitation

1992 ◽  
Vol 120 (6) ◽  
pp. 1003-1018 ◽  
Author(s):  
J. Sun ◽  
R. A. Houze
2019 ◽  
Vol 124 (2) ◽  
pp. 1090-1117 ◽  
Author(s):  
Bin Han ◽  
Jiwen Fan ◽  
Adam Varble ◽  
Hugh Morrison ◽  
Christopher R. Williams ◽  
...  

2016 ◽  
Vol 144 (1) ◽  
pp. 371-392 ◽  
Author(s):  
Yujie Pan ◽  
Ming Xue ◽  
Guoqing Ge

Abstract In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis scheme. The results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.


2018 ◽  
Vol 146 (3) ◽  
pp. 723-743 ◽  
Author(s):  
Anders A. Jensen ◽  
Jerry Y. Harrington ◽  
Hugh Morrison

Abstract A quasi-idealized 3D squall-line case is simulated using a novel bulk microphysics scheme called the Ice-Spheroids Habit Model with Aspect-ratio Evolution (ISHMAEL). In ISHMAEL, the evolution of ice particle properties (e.g., mass, shape, maximum diameter, density, and fall speed) are predicted during vapor growth, sublimation, riming, and melting, allowing ice properties to evolve from various microphysical processes without needing separate unrimed and rimed ice categories. ISHMAEL produces both a transition zone and an enhanced stratiform precipitation region, and ice particle properties are analyzed to determine the characteristics of ice that lead to the development of these squall-line features. Rimed particles advected rearward from the convective region produce the enhanced stratiform precipitation region. The transition zone results from hydrometeor sorting; the evolution of ice particle properties in the convective region leads to fall speeds that favor ice advecting rearward of the transition zone before reaching the melting level, causing a local minimum in precipitation rate and reflectivity there. Sensitivity studies show that the fall speed of ice particles largely determines the location of the enhanced stratiform precipitation region and whether or not a transition zone forms. The representation of microphysical processes, such as rime splintering and aggregation, and ice size distribution shape can impact the mean ice particle fall speeds enough to significantly impact the location of the enhanced stratiform precipitation region and the existence of the transition zone.


2019 ◽  
Vol 147 (8) ◽  
pp. 2787-2810 ◽  
Author(s):  
Frédéric Tridon ◽  
Céline Planche ◽  
Kamil Mroz ◽  
Sandra Banson ◽  
Alessandro Battaglia ◽  
...  

Abstract This study investigates how multifrequency cloud radar observations can be used to evaluate the representation of rain microphysics in the WRF Model using two bulk microphysics schemes. A squall line observed over Oklahoma on 12 June 2011 is used as a case study. A recently developed retrieval technique combining observations of two vertically pointing cloud radars provides quantitative description of the drop size distribution (DSD) properties of the transition and stratiform regions of the squall-line system. For the first time, the results of this multifrequency cloud radar retrieval are compared to more conventional retrievals from a nearby polarimetric radar, and a supplementary result of this work is that this new methodology provides a much more detailed description of the DSD vertical and temporal variations. While the extent and evolution of the squall line is well reproduced by the model, the 1-h low-reflectivity transition region is not. In the stratiform region, simulations with both schemes are able to reproduce the observed downdraft and the associated significative subsaturation below the melting level, but with a slight overestimation of the relative humidity. Under this subsaturated air, the simulated rain mixing ratio continuously decreases toward the ground, in agreement with the observations. Conversely, the profiles of the mean volume diameter and the concentration parameter of the DSDs are not well reproduced. These discrepancies pinpoint at an issue in the representation of rain microphysics. The companion paper, investigates the sources of the biases in the microphysics processes in the rain layer by performing numerical sensitivity studies.


2011 ◽  
Vol 68 (5) ◽  
pp. 1114-1123 ◽  
Author(s):  
Jasmine Cetrone ◽  
Robert A. Houze

Abstract The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.


2009 ◽  
Vol 137 (3) ◽  
pp. 991-1007 ◽  
Author(s):  
H. Morrison ◽  
G. Thompson ◽  
V. Tatarskii

Abstract A new two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF). This scheme is used to investigate the formation and evolution of trailing stratiform precipitation in an idealized two-dimensional squall line. Results are compared to those using a one-moment version of the scheme that predicts only the mixing ratios of the species, and diagnoses the number concentrations from the specified size distribution intercept parameter and predicted mixing ratio. The overall structure of the storm is similar using either the one- or two-moment schemes, although there are notable differences. The two-moment (2-M) scheme produces a widespread region of trailing stratiform precipitation within several hours of the storm formation. In contrast, there is negligible trailing stratiform precipitation using the one-moment (1-M) scheme. The primary reason for this difference are reduced rain evaporation rates in 2-M compared to 1-M in the trailing stratiform region, leading directly to greater rain mixing ratios and surface rainfall rates. Second, increased rain evaporation rates in 2-M compared to 1-M in the convective region at midlevels result in weaker convective updraft cells and increased midlevel detrainment and flux of positively buoyant air from the convective into the stratiform region. This flux is in turn associated with a stronger mesoscale updraft in the stratiform region and enhanced ice growth rates. The reduced (increased) rates of rain evaporation in the stratiform (convective) regions in 2-M are associated with differences in the predicted rain size distribution intercept parameter (which was specified as a constant in 1-M) between the two regions. This variability is consistent with surface disdrometer measurements in previous studies that show a rapid decrease of the rain intercept parameter during the transition from convective to stratiform rainfall.


2020 ◽  
Author(s):  
Jie Gong ◽  
Xiping Zeng ◽  
Dong L. Wu ◽  
S. Joseph Munchak ◽  
Xiaowen Li ◽  
...  

Abstract. Ice clouds and falling snow are ubiquitous globally and play important roles in the Earth's radiation budget and precipitation processes. Ice particle microphysical properties (e.g., size, habit and orientation) are not only influenced by ambient environment's dynamic and thermodynamic conditions, but also intimately connect to the cloud radiative effects and particle fall speeds, which therefore impact up to the future climate projection and down to the details of the surface precipitation (e.g., onset-time, location, type and strength). Our previous work revealed that high-frequency Polarimetric radiance Difference (PD) from passive microwave sensors is a good indicator of the bulk aspect ratio of horizontally oriented ice particles that are often occur inside anvil clouds and/or stratiform precipitations. In this current work, we further investigate the dynamic/thermodynamic mechanisms and cloud/precipitation structures associated with ice-phase microphysics corresponding to different PD signals. In order to do so, collocated CloudSat radar (W-band) and Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM-DPR, Ku/Ka bands) observations as well as European Centre for Medium-Range Weather Forecasts (ECMWF) atmosphere background profiles are grouped according to the magnitude of PD for only stratiform precipitation and/or anvil cloud scenes. We found that horizontally-oriented snow aggregates or large snow particles are likely the major contributor to the high-PD signals at 166 GHz, while low-PD magnitudes can be attributed to small cloud ice, randomly oriented snow aggregates, riming snow or super-cooled water. Further, high (low) PD scenes are found to be associated with stronger (weaker) wind shear and higher (lower) ambient humidity, both of which help promote (prohibit) the growth of frozen particles and the organization of convective systems. An ensemble of squall line cases is studied at the end to demonstrate that the PD asymmetry in the leading and trailing edges of the deep convection line is closely tied to the anvil cloud and stratiform precipitation layers respectively, suggesting the potential usefulness of PD as a proxy of stratiform/convective precipitation flag, as well as a proxy of convection life stage.


Sign in / Sign up

Export Citation Format

Share Document